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I .  Introduction

One of the principal boundary value problems in analytic

function theory is the so called RIEMANN boundary value problem .

The simplest version of the problem requires the finding of

an analytic function ~ in C\r , where r is a closed

smooth contour , and a prescribed Holder continuous j ump is

prescribed for ~ across r. The solution of this problem may

be given in terms of a Cauchy integral (see [5], [8] ,and [10] ).

In general ized analytic , as well as generalized hyperanalytic

fun ction theory , a Cauchy-type representation exists, which

suggest that the Riemann problem may be solved in a similar

way. This problem was solved in [2]; whereas , in (1] the

second major boundary value problem , that associated with

filbert , was solved for generalized hyperanalytic function

theory .

In (7 ] pseudoparabolic equations of the form

(1) Lw: = ~~ [w + aw + b~1 + cw + d~ 
= 0

where a, b, c, d c L 2(~~), 2 < p were investigated. Integral

representations reminiscent of those occurring for generalized

analytic functions were found to be valid. This permits the

posing and solving of what we refer to as an initial-boundary

value problem of the Riemann type. The considerations of [7]

concerning the hypercomplex operator

Ii
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(2) + aw + b~j  + cw + d~

where

(3) Dw: = + q(z)

r— 1
with q(z): = ) ekq~~x,y

k= 1

(Here e is a nilpotent with er = 0.) suggests a natural

extension should be possible here. Indeed , similar results

should also be available for the metaparabolic equations of

the form,

(4) w + aw + b~ + cw~ + d
~t 

= 0

and

(5) Dw + aw + b~ + cw~ + d
~t 

= 0

In our work we make the simplifying assumption that the

coefficients vanish identically in the unbounded component of

~r\r. This condition may be removed if sufficient decay is

imposed on the coefficients as z -
~~ ~~; however, this leads to

further technical considerations. Moreover, we have only

considered the case where I’ consists of a single contour.

It would be of interest to treat the case where D+ is multi-

connected, but the multiplicity is a piecewise constant with

respect to t

______________________________________
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II. Representations of Solutions

By means of the Pompeiu operator the pseudoparabolic

equation

(1) Lw = 0 , Lw: = }_ fw + aw + b~J
+ cw +

a, b, c, d c L~~2(~ ) (2 < p)

may be reformulated as the integral equation

(2) w - 
~~~

. J (aw + b~ ) ~~~~ 
- 

1 J J + d~ )dt

= w(z,O) — 

~~~~~~~~~~~~~~~~~~~~~ + ~~z,t))

where ‘
~it

(z,t) E 0. Here

‘~(z,t) = ~ a
k
(t)z’

~ 
(z c ~~~~ t c IR), •(z,0) 0

k=0

and •(z ,t) is a differen tiable func tion of t

If for each t c ~~~, w(z ,t) is a bounded function in ~

then ~(z,t) is a bounded analytic function in ~ for each t.

By Lionville ’s Theorem •(z,t) is a function of t alone

i.e. ~(z,t) •(t). In this case as z + ~ in (2) one has

— w (.o,t) — w(°’,O) , i.e. 0(0) — 0 ,

consequently for bounded solutions (1) is equivalent to
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(3)  w - (aw+b~) - 

~~

. J f0(c~~~~~~ t ~~~~ = ‘D(t) +

where

(4) 4 (z): = w(z,0) — ! 
j  [aw

(~~,0) + bwTc7~JJJ ~~~~

If now w is a continuous solution of (3) bounded in z c

for each t c R then

~c CUR) , 4c C (q~)

We consider now (3) for given data ~ c CUR), ~ c C(C).

Lemma 1: Let $ c C (IR) , ~ c C(~ ), and the coefficients a , b

satisfy the inequality

(5) J [ Ia (~
) I + Ib (c )  ~J~_ < ~ < 1 (z c cia .

Then in the space B~ (~ x R) of functions which are bounded

in z ~ C for each t c R equation (3) is uniquely solvable.

Proof: The difference w: = w1-w2 of two solutions of (3)

having the same initial data, and asymptotic behavior as

z + 
~~~, is a solution of the homogeneous equation

w Tw : (aw+b~) + J J (c~+d~)dt .
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If ~ denotes an upper bound of

J ( id  + i d i )
C

and

i 1 w i i 1 : = sup Iw ( z ,t ) I
zcC,

i t i ~~l

then

l I ’ ~’w H 1 < (ct+~~I t i ) i j w l I i

It follows that T is a contractive opera tor if

it ! < Min {l i 2j.~.};

hence, ~ = T~ has only the trivial solution

E 0 for z ~ , ~~ < t0 : = Min{l~ ~j~}
The statement holds also for It ! = t0 because of continuity.

As the equation (1) is an autonomous differential equation

with respect to t we can extend this conclusion to read

w(z,t) 0 (z C C , t e R).

Let B~ (C) now stand for the class of functions having real

derivatives up to order p which are continuous and bounded.

Corollary: Let w(=,t) c CUR). and w(z 0) s B0(C).

Furth•rmore, let the insgualiL (5) hold. Then equation (1)

is uniquely solvable in BC(~ 
x

___________  — __
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Lemma 2: Let ~ c C1UR) , c B1(C) , and inequality (5)

hold. Then integral eq~zation (3) is solvable.

Proof. Equation (3) can be written in the form

w - Tw = ~ + 4,

and be solved by iteration . If we put

w0: ~ + 4, , Wk = + 
~ 

+ ?‘k-l (k C IN)

then

w = lim Wk = ~

k-*~ k=0

is a solution of (3). The convergence of the series follows

from the estimates

I [,~w) (z,t) I < (k)a
k_2

8~ I
~ !

’
~I iw~,I 1 t

{ 11 w I i  = sup 1w (z~T H J
~ t zeC ,

I t  t .~. It I

and

k k I I w I I
(w(z,t) I < 

~~~

-

~

- [~ ) I t i  
~ 

° (z  C C , t C IR) .

In the following we are interested in special “bounded”

solutions of (1). If • given by (4) is a bounded analytic

function in C then 4, must be a constant, i.e.

•(z) w(CD,O) so that

0(t) + 4 ’ ( z )  w(~~,t).
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By this we are led to consider the equation

( 6)  w — T w = ~~~

where 4, is a differentiable function of t in ~
(i) i~ is a real fun ction: The unique solution of (6) is

given by

k~ 0 
T~ = 

k~0 
ak4,k

where ak are functions of z alone and are given by

iterated integration of 4,

= 4, 4,k(t): = ~~~_1 (T~~~t (k C

The functions ctk are independent of 4,, and are determined

by the functions a , b, c, d of the operator L ; they

fu l f i l l  the following integral recurrence formulae.

- 

~ I 
faa + b ____ = 1

(7)

- 

~ [aa J~ + b çJ ~5~n = J [c~~ _~ + d~j~~1J ~~~~ 
(k c$)

This system is solvable (see Vekua 1 9]). has to be the

first function F of the generating pair (F ,G) corresponding

to the functions (a,b) (see Bers [3]) and the other ak in the

following ,denoted by Fk ,  are then uniquely defined from

F • Th. solution of (6), for qiv.n rsa]. ~p , may b. uen

to be given by

(8) [F *) (z,t) : P (z)* Ct) (z C C, t c IR),F : F.- k—O °
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A majorant of this series can be found by

sup fF(z) I sup I4,(T) l exp ~~ i t l
zcC I t I~~l t I 

a

(ii) ~ is a pure imaginary function: Then as in (i) one

obtains a solution of (6) in the form

(9) (G ~p)(z,t ) :  = 

~ 

G~~(z)~~~(t) (z C C, t c R)

where G0
: = G is the second function of the generating

pair (F,G) and the Gk 
are the solutions of the system

G - I I laG + b~ 
d~dfl = ~o it j ~ o o r—z

C

(10)

G
k 

- 

~ [aG~ + b~k) 
~~~~ = ~ J {c Gk l +dG

k l J ~~~~~
1 (k C IN) .

The coefficients Fk and Gk 
appearing in the representations

for F , respectively G, have the additional properties

F (ør ) = 1, G~ (oo) = j, F~~~(co ) = 0 , G~ (oo) = 0 (k C jN)

= 

~l 
+ i4,2 is a complex function: Let w be the

solution of (6) then

= w — !‘ l’i 
-

is a solution of the homogeneous problem

as can be seen by



9

(F~L’1 + GiL~2 ) Cz ,0) = F ( z ) 4 ,1
( 0 )  + G0Cz )4,2

(0)

+ 
~~~ 

(c~,t)  = 4,1(t) + i4,2 (t) = 4,(t)

and the corresponding function 4, given by (4)

4,(Z) 4,(0)

which follows by the first equations in (7) and (10). With

this we conclude that W is identically zero; hence , we have

the representation

w = +

Generally every solution of (1) with van ishin g initial

data can be represented by the resol’rent of an integral

equation when the coeff icients a , b, c, d of L are asked

to vanish outside of the closure of a bounded doma in D wi th

rectifiable boundary r.

Theorem I• A solution of (1) in D X R, having zero initial

data w(z ,0) E 0 , ~~~ be represented as

(11) 
~~~ ~

- W (
~~
,T)

~~t
(Z ,t ;

~~
,T)d

~]dt

t w(z,t) , z C D
, t c R .

0 , z~~~ D

The are the fundamental kernels of L and are given by
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(l2a) (z,t;ç,t): = (z,t;~~,t) +

(_l)k~~ iX (2 (Z , t ;~~~, T ) ,  (kl ,2).

Remark: Here the xk(z ,t;r ,T) are a system of fundamental

solutions of (1) having the Vekua (z,~~) fun damental

solutions as the initial coefficients, namely

(12b) x~~~ (z,t;~~,T) = 

~ 

X~~~ (z,~~) 
~~~~~~~~~~ 

(k=l ,2)

(See Gilbert-Schneider [7] and Vekua [9] pg. 167)

(12b) are convergent for all real t and t, and

X~~~ (z,~~) = 
(;j 

exp[w (z)_w 0~~(~~ J,

(k)CBc&(C) (k) (z) = O ( I Z l
a) (z + 

~
) ,  a =

The (z~~ ) (VCJN , k=l ,2) are solutions of the system (7). As

may be seen X~
1
~~(z,~~)cL (I~),2<p1; hence, X~

1
~~(z,~~) belongsp1

A (k) -lto C (D) for each ~ cC and X (z ,~~) = 0( IzI ) (z -
~ ~~,rC C,

vclN ) (see Gilbert-Schneider [7]). An estimation of the series

in (l2b ) shows

(z ,t:c,r )— ~~~ (z ,?)— ~~ . ~~~ (z,?) (t—T )

< [2j~)

3
[exp ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for each ~ c C, t and it real

1 . - . - . .
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4

~ (k) has the fo.Llowing local behavior

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(r~—z+0,t—t+0 ,~~=a<1)

(13) 2
~~(z,t,~~,r) = 0 ( i C - z i ~~~ l t - t i )

~~
( k ) ( Z t ; ~~~ T )  = 0 ( ! z t ~~ lt - T I)  (z ~ , k = 1, 2 ) .

The proof of theorem 1 is given in [ 7 ] .

Theorem 2. If w(z,t) is analytic in C - D for each t C £~
w(~ ,t )  0 , and wt(z,t) continuous in ~t 

- D x IR , w ( z , 0)

and a = b = c = d = O  in C - D , then

~~~~
j

t j [w ( C , T) 1
~~(z t;~~~t)d~ 

- w1(C, T) 
2)(z t;

~~ r)d~]dt =

f — w ( z , t ) ,  z p~ D
, t C ~~~ .

~ 0 , Z C D

Proof. Let Z C C - fi be a point of K
R 

= {~~: I~ i < R}

such that 2 i z I< R and DCK R. The coefficients a, b, C, d

vanish outside D w is a solution of (1) in (K
R 

- D) x IR.

By theorem 1

w (z ,t )  = ~ J
t
f [wt(~~,T)

1)(z ,t;~~,T)dC
0 

~
(KR

_b )

- w1(~~,T) ~~
(2)

(z t.~~ t)~~~~dT

As w (z,t) — O~~(z)~~~J , wt(z,t) = 0((z)~~~) (z + ~~) ,  it follows
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from (13) as R tends to infinity that the part of the

integral taken over = R tends to zero. If Z C D the

left side of the last equation has to be replaced by 0.

Theorem 3. A continuous solution of (1) in D x D~ with

w(z,0) E 0 where a, b, c, d vanish outside $ may be

represented in the form

(14) w(z,t) = 

~ i: J ~ ,t) (z,t;~~,it)d~ 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ }
dT (zCD , tC I~)

where

(15) ~ (z ,t ) :  = 
~~~ J w(~~,’r)

is an analytic function of z in D, continuous in ~~, and a

continuously differentiable function of t in ~

Proof. The integral equation (2) now has the form

(16) w = Tw + 0.

As Tw is an analytic function of z in C - ~ , continuously

differentiable with respect to t in ~R, and

(Tw ) (~~,t) 0 , (Tw ) (z,0) 0

it follows by theorem 2 that

_ _ _ _ _  -
~~~~~~~~~~
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$

~i~
_ f t f {. (Tw) (c , r ) c 4 ’~~(z , t ;~~,T) d ~ —

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 (z€D , t CR)

As w and Tw are continuous functions in B x IR , ~ is

continuous there too and moreover ~ is continuously

differentiable with respect to t and analytic in z. If one

replaces w in the integral of (11) by the right hand

side of (16) one gets (14) by using the last equality . (15)

is to be found by the Cauchy formula for ~ in replacing ci’

by w - Tw where Tw is observed to be analytic in C - D
for every t C JR vanishing at infinity .

The formulas (14), (15) may be considered as a device

for constructing all solutions of (1) with vanishing initial

data. They now will be used to prove another representation

for the solutions of (1).

Theorem 4. Every solution of (1) with a = b = c = d = 0

outside D with w (z,0) E 0 is representable ~~

w(z,t) 0(z,t) + J f ~~~~~~~~~~~~~~~~~~~~

+ 0 (
~~,it) 

r 1
(2)

(z,t;c,T)}d~dndt
I

where 0 is the function in (15), and (k — 1, 2) are given

— c21~~~(z,t;c,r), itr~
2
~ (z,t;c ,t): —

- — _ __________
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Proof. The theorem follows at once by an application of the

Green identity for the domain DC) {r :I~ -zi > C}, formula (14),

and allowing e tend to zero (see Vekua [9]).

As the kernels as functions of (c,t) , with fixed

(z,t),are solutions of the following equations

~~~ (z,t ;~~,t) 
— a(~ )c2.~~ (z,t;~~,’r) — b (?) c2~

2
~ (z,t ;~~,T) +

+ c(~~)c ~~U (z,t;~~,T) + ~[j) ~(2) (z,t;~~,T) = 0

~~ (z,t;~~,t) — a ( C )  cz (2 )  
(z,tg,I) — b (r)c241~ (z,t;t ,t) +

+ c(~~) ~
(2) (z , t ; z , r )  + d(~)c2~

’
~ (z,t ;~~,T) = 0

(see Gilbert—Schneider [7]) one has

7~ r~~~~(z,t ;~~,t) = a(~) ~
1
~~(z,t;~~,t) + b (t)c2~

2
~~(z,t;r ,T) —

— c(r)1~~~ (z,t ;~ ,t) — d(~ )cZ~
2’1 (z,t;~~,t) ,

~ ~~~~ (z,t;C,T) = a(~)~~
2
~ (z,t;C,T) + b(~)Q.~~ (z,t;~~,t) 

—

— c(~)Q~
2
~ (z,t ;C.T) — d (CL~2

(U (z,t;~~,T)

or by integrating

~~ r~~~~(z,t,c,t) ~~~~~~~~~~~~~~~~~~~ +b(C) 
2
~~(~~.~~;c,t) +

+ c(c) J ~~~~(z,t;z ,s)ds + d [t) J ~~
2
~ (z,t;~~,s)ds

-
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~ ~~~ (z,t ;C,r) = ~~~~~~~~ (z,t;~~,T) + b(~)~~
Cl) 

(z,t;~~,T) +

_ _  t t
+ c(~~) J ç~

( 2 )  
(z , t;~~,s)ds + d(~) ~2

( l)  
(z,t;r ,s)ds

III A Second Integral Eq~iation for Solutions.

Our preceding considerations, as well as those in [7 ] ,

are made under the restrictive assumption (5). Another similar

approach can be done without (5) for all a, b , c, d in L~ ,2 (C)

(2 < p) . For this reason the fundamental kernels

~ (k) (z,C) (k=1,2) of the equation

w— + a w + b ~~= 0z

as given by Vekua (see [91, III 8), are used. From formula

(13.19) of Chapter III in ( 9 ] it is obvious that special solu—

tions of (1) satisfy the integral equation

(17) w(z,t) - 

~ J f [[c(~ )w(~~1 T) + d(~~)w(C1t)Jc2
W (z tc) +

+ 
[~~~~

)w(c1 I) + d(c)w(~ ,t))~~
2) (z,c)]d~dndt = •(z,t)

where ci’ is a solution of

This can be seen by differentiating (17) with respect to t

~~ and ~ after splitting the integral over D into one over

and one over Ic-zI < C as above. Again we are interested

____________________ — - -  — .
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in bounded solutions of (1) in the sense that they are bounded

in C X 
~ for every interval I of IR. If w is such a

bounded solution and fulfills (17) for some 0 then has

to be a bounded solution of

U)— + aU) + b = 0
z

in C for each t in fl. If as before (F ,G )  is the

generating pair of this equation every bounded solution in ~
has the form

AF + pG
0 0

with real constants A and p. By this 0 has to be of the

form

‘D(z,t) = A(t)F (z) + p (t)G (z)

with real differentiable functions A and p of t in ~~.

(i) A = p = 0. If the integral operator in (17) is denoted

by P the problem

(18) w - P w = Q

has to be solved. To show that it has only the trivial solution

one observes the bound

~ [ I c I 4 l d I )  ~~~~ (z , r )  I + I ~2 ( 2 ) (z , C ) I ) d ~dri < K < ~~.

Let

J I W 1 I K : sup Iw(z ,t)I ;
zcC,
K I t I ( l

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
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then for z c C and K i t i  < 1 it follows from (18) that

Iw (z ,t)! < K Ii w I I i t I .

But this means that w vanishes identically in z c C and

K i t i  < 1. As above , because of autonomity of L , w must

vanish identically in C X

(ii) ~i = 0. Now the solution of

w - Pw = AF
- 0

is sought, and this can be done by iteration , namely

w0: = AF0 Wk: = w0 + Pwk_l (kC~
), w: = lirn wk = 

k 0 °

The function w is then uniquely defined when the convergence

of the series has been shown.

= A F
k (kC IN), A0

:= A ,Ak(t)= J0
A~~~1

(T~~~t (tC~~) ,  (k€*J),

Fk
(z): = 

~ I [(c(C)Fk l (~ )+d(C)F k l (~ ))~~
W (z,~~) +

+ 
[~
TE)Fk l ~~~ 

+ d (c)Fk_l (~ ))c2 (2) (zs~~)]d~dn (kC~4)

The convergence follows from the estimates,

I I F k II Kk I I F I I  A kHt ~ ‘~~ 
II A ~ I i. ~ (kdN

0
)

where

II F k J k  SUpJFk(z)I J I A k I !  : = sup
zcC t I t I .~.It I
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so that

(19) (FA)(z ,t): = 
~ 

Ak
(t)Fk

(z) (zcC, tC~R)
k—0

is the solution. The functions Ak and Fk have the

properties

Ak
(O) = 0 (keIN), Fk

(
~
) = 0 (kC~ ), F0

(~ ) = 1.

(iii) A . 0 .  As in (ii)

(20) (C p) (z,t) : = 
k=0 

Pk(t)Gk
(Z) ( zC4 , tC~~)

is the unique solution of

w - Pw = pG
- 0

where and G
k 

are defined similarly as Ak respectively

Fk 
and

= 0 , Gk
(
~
) = 0 (kcN) , G (~ ) = i

(iv) A and p arbitrary. The solution of the general problem ,

w - = A F + pG

is given by

w = F A + C p.

The operators F and C are indeed the same as in (8) and

(9) because the Fk 
from (19) are special solutions of the

system (7) as the Gk 
from (20) are of the system (10). The

difference of two solutions of the k-th equation of (7),or

(10) ,is a bounded solution of

w + a w + b 0
z

i _ _ 
_ _ _ _ _ _ _ _ _
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which vanishes at infinity . But this only can be the zero

solution . Because of these considerations we can now ignore

the assumption (5); that is a and b , as well as the

coefficients c and d, only have to be in

(v) ci (z,t) = f(z)t. If (17) has the form

(w — Pw)(z,t) = f(z~ t (fcL 2(C)(2 < p))

which for example is of interest when an inhomogeneous equation

Lw = f , f independent of t , has to be solved , the same

calculations give the uniquely defined solution in the form

w(z,t) = 
k~~O

k 
, f :  f

fk
(z): = 

~ f {[c(~ )fk_l (~ )+ d(~ )fk l (~
) 
]
~~(l) (z,~~) +

+ [c(~
Trk...l(c) + d(~ )fk l (C)1~2 (2)(z,r)}d~dn (keN) .

IV. Piecewise Continuous Solutions.

In the following the coefficients a, b , c, d are

supposed to vanish identically outside the closure of a

regular bounded domain D and to belong to L~ (B) for some

p > 2 .

Lemma 3: Let p(z,t) be a H8lder continuous function of z ,

and a C1 function of t, for (z,t) c r x I, F :aD , I an

interval (or open set) of JR . Let r be the union of a

_______ -
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f in ite number of bounded , smooth, nonintersecting, closed

curves Fk ( O < k < in), such that C - I’ consists of one

multiply connected bounded domain D — D~ and simpiy

connected doma!~~ D~~(0 ~ k ~ m) ,D = C - where D0 is

unbounded. Then

(21) 0(z,t): = 
~~~ J p(r ,t)

is analytic in D~ as well as in D for each t e I,

continuously dif f e rentiable with respect to t for each z gf r

satisfying

O
t

(z ,t) = 

~i~r f Pt~~
,t) I~i

and

= lint 0(C,t) = 0(z,t) + ~~
- p(z ,t)

~CD
+ (zC r, t I).

= lim 0(~~,t) = ci (z,t) — p(z ,t)
c+z-

~cD

Remark: Here (21) for z c r has to be understood in the Cauchy

sense. The proof of this Plemelj-Sokhotski type formulae is

modeled along the lines of the classical proof. In this regard

see Gakhov (5] ,p.51 and p.64 and Muskhelishvili [8], p.128.

Alternatively we may write

— •(z,t) — p(z,t), 0~~(z,t) + •(z,t)  — 20(z,t).
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Lemma 4 .  Let p and 1’, D~~, D be as in the precedi~~

lemma and I = IR , a, b, c, d in L (D+. anishing outside

D~ , ~ (l) ~ (2) the fundamental kernels of the operator L

as given in Theorem 1. If then p (z,0) vanishes identically

~ r

(22) w(z,t) = ~L 
~ f {P (~~i T)c~~-) (z~ t ; ç,r)dç -

-

is a solution of (1) in each component of C - r , and in

particular, of w = 0 in C - D . Furthermore , w(z,0) 0,
— 

~t 
—

and w(z,t) fulfills the jump conditions,

(23 )  w~~(z,t )  = w(z,t) + 0.5p(z ,t) (zer , tcR).

w (z,t) = w(z,t) — 0.5p(z ,t )

Remark: Here the first integral in (22 )  for z ~ r has to be

understood in the Cauchy sense.

Proof. Because of the local behavior of the fundamental

kernels (13) and the Plemelj-Sokhotski formulae for parameter

dependent integrals it follows with (21)

(w—0)~~(z,t) = (w—$)(z,t) (w—0) (z,t) (zer , tca~).

Therefore w - $ is continuous even on r so that (23) follows.

That (22) is a solution of (1) follows by direct computation and

the differential equation system for the kernels (see Gilbert-

Schneider [7],(2.l3)).

_  

_
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~ (l) + a~~W — b~~
2T 

+ ç~(l) — dc2~
2
~ = 0

t t

~ (2) + acl~
2
~ — 

~~~~ + c~2~~
2
~ 

— dcl~~ = 0
t t

Theorem 5: Let p have the prqperties stated in Lemma 4 .

Let v be a solution of the associated equation

(24) L*v: = h (v - av - by) + cv + =

defined in 0 x JR and which vanishes at t = T c IR for all

Z C C. A necessary condition for p to rep~~ sent the

Hölder continuous boundary data w~ of a solution of (1)

in D , which furthermore has identically vanishi~~ ini t ia l  data

is that

(25) In Pt(~~
1t)Vt(C,t)dCdt = 0

and

(26) J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
= 0  (zc D , tc~ )

Proof. Equation (24) is a conclusion of the identity of

Green (see (7], (2.18)). To see the validity of (25) one has

to consider

— 
- — . 

. , .- .. — 

—
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p

u1(z , t ) — w ( z , t ) ,  ~~~~~ teJR
u(z ,t): = 

—

u
1
(z ,t )  , zeD , teiR

( 27 )  u1(z , t ) :  = ~~ i: f {p1(~~,T)~~~1)(z,t;c,T)dc -

- P 1 , T 4 ) , t , T ) d C}dT

which fulfills the boundary condition

+ - ÷ - + +u - u  = u 1 - u 1 - w  = p - w

on r x ff~ and for each fixed t in IR

u(z,t) = O (Iz[~~) (z +

If on F x f~ w~ = y then u is in C x ff~ a continuous

solution of (l),vanishing identically in t for z = ~,and

identically in z for t = 0. By the proof of Lemma 1, u

vanishes identically.

Theorem 6. The condition (25) is sufficient for p to be

the boundary values of a solution of (1) in X

Proof. The function u, given in (27) is a solution of (1)

+in D x J~ and in D x R and on r x

+
- u1 = p.

Since (25) holds u1 vanish.s identically in D x

so that u~ vanishes identically on r x P.

_____________ _ _ _ _ _  - - -a - --- --
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V. General Linear Riemann Boundary Value Problem.

Let I , a, b, c, d be as in the preceding section .

Let g, h, y be Holder continuous functions of z on F

where y may also be a fun ction of t which is con tinuou sly

differentiable in that variable. Furthermore g i~’ to have

no zeros on 1’.

Theorem 7. Let w be a piecewise continuous solution of (1)

in C x R with a j ump over I’ x U~; namely, on F x ~

(28) w~ = gw + hw + y

Furthermore, let w have the homogeneous data

w(z,0) E 0(zCC), w (OD ,t) E 0 (tc~ ).

If v is any solution of the associated problem (24), such

that v(z,T) E 0 for some fixed T , and all z e C . Moreover,

let

(29) v = v~g - v ~h

on r x ~ , where a denotes the arc length parameter on r

then

(30) Im J J {w;(z , t )v ;(z~ t) + 
~~~~~~~~~~~~~~~~~~~~~~~ = 0 .

Proof. From (28) it follows

mm f j w~~(z ,t)v~~(z ,t)dzdt — Im J J (gw v~ dz — h w v ~dz + A
~
v
~
dz)dt.

With (29) and the ~reen ’s identity (30) can be deduced .

& 
_________
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In the homogeneous case where y 0 , the equalities

Im f f w~~(z,t)v~ (z ,t)dzdt = Im f f
w;(z~ t)v;(z~t)dzdt = 0

hold instead.

VI. The Special Riemann Boundary Value Problem.

Let now I’ consist of a single contour not passing

through the origin , and let h be identically zero so that

the problem to be studied is,

+(31) Lw = 0 in C-F , w = gw + y on 1’ x ~~

As in the case of analytic functions (a = b = c = d = 0 in

~r ) the solution depends on the index of g, that is

m d  g: = 
~

-
~-r J d log g

In the following the notation

w+(z,t) , z c , t ~w(z,t): = — —w(z ,t) , z e D  , t e P

will be used . If m d  g = n(c~~ then z~~ g(z) is a HOlder

continuous1 nonvanishing complex function on r of index

zero. Hence,

4,(z): = log g(z) — n log z

is a single valued ,HOlder continuous function on r.

= w exp(-~ ) , 4,(z): = f •(C)~ -~-~

___________________ • ..
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leads (31) to the problem

(32) + aw + bU~) + cw + dw 0 , = ~~~ + y

= b exp(2ilmtj), d: = d exp(2iIm4,),

= y exp(—~ —0.54,).

(i) n = m d  g = 0. In the case of index zero the problem is

+ aw + b~ ) + cw + dw = 0 in (ct\F) x
(33)

+
+ on r ~~~~~

If the fundamental kernels with respect to a, b , c, d are

denoted by ~ (k) (k=1 ,2) then

w(z,t) = 
~~~~

(z,t)
~~th 1 ~ {~1 ,T ~~~~~~~~~~~~~~ -

—

is the solution of (33) uniquely defined by

w (z,0) = 0 (zCC) , w (z,t)  = 0( IzI ’) (z + ~ , t e

This is a conclusion of the Plemelj-Sokhotzki formula (23).

If to this solution a bounded solution w
0
(z,t) of the differ-

ential equation of (33) in (C x ~ ) with given data

w0(z,0) 0 , w
0
(~~,t) ~ 0 (w0(~~,t) £ C

1(IR))

is added,one gets a solution of (33) with this “t—data”

—------ . - .
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and vanishing “z-data ” . As it has been shown in III this solution

w can be represented by the operators (19) (respectively (20))

associated with the differential equation in (33) as

w = FA + Gp (~~~(~~,t) = A C t )  + ip (t)).

If now w1 
is a solution of the differential equation in (33) with non-

vanishing “z-data” , namely

= ~s(z) , ~~1
(oo , t )  E 111(0~) ,

and u is a particular solution of

~~ 1 u +  au + bU) + cu + du = c~i +

in the form (see 111(v))

k+ltu(z,t) = 
~k=0 (k+l)1

with

f :  = cp+di~, 
~~~~~ 

= J {[c(~ )fk_l +d(~ ) f k_ l ( C)l~~~
1) (z,c) +

+ 
[~~~~

fk_l c + d(~ )fk_l (~)]
2)(~~,z)}d~dn (kctJ)

then w1 
- + u is a solution of (33) with homogeneous data.

Hence we have the following theorem:

Theorem 8. The general solution of (31) in the case n = 0

is given ~~

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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k+l F —

{I~~(z~ t) — 
k— .’ 

.k
(z) 

(k+l)!~ 
~p(z) + VA+C+2,t)}

exp [~~.j j 
log g(~~)~~~~ )

where - t C1’ (R),A (Ø) = p(0 )  = 0 , ~pcC(C ) ,  ip ( eo ) = u r n  ~p (z)c C.

(ii) - - m d  g > 0 . A special solution of the inhomogeneous

trar~ t~~ med problem (32) with

~ z.D) 0 (zeC), u r n  Zn+lU)(Z ,~~) = X ( t )  (tcP),xc C1(JR )
z-.~

can be ‘ound by the transformation

+ +
W (z,t)  , zeD

(34 ) .~1 (z,t): , tCIR

z~~w ( z , t ) ,  zcD

This furtc .’;n has to be a solution of

+ aw
1 

+ b
11) 

+ + d1~ 1 = 0 in (C l’)X IR,

(35)

on r x J R

where a , ZED+

, d1:=

, zc D (zr ’) ltd , ZC D

It must also satisfy

w1(z,0) 0 (zcC), w1(z,t) — 0 (~ z~~~ ) (z -
~~ ~ , tcR) .
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The solution of this problem is uniquely defined by

(36) ~1 
(z,t = (I

1
y)  (z,t): = ~1JJ {c1(c~t)~~ (z,t; ~,t)d~ -

—

where (k=l ,2) are the fundamental kernels belonging to

a, b1
, c, d1

. The uniqueness follows because the homogeneous

problem (35) with y 0 has only the trivial solution .

Using the function w1 we seek a special

solutiofl w of (32) by means of the transformation (34), namely

(37) W
+
: = in D+ x JR , U) : = in D x JR .

Now the general solution of the homogeneous problem

-~~ fw + aw + + ~~ + = o in (C-r) x
I J

(38) +
U) — z w  0 on r x J R

I’ has to be found. In order that a solution w

behaves regularily at z = ~ (for each t in IR), the

solution of the transformed problem (35) with y = 0 may

only have a pole of order no greater than n (for each real

t). We have assumed that the coefficients of L vanish near

infinity in order that be of the form

c t ( z )  + B (z,t) , 8_(z,t) E 0
z

in the vicinity of (for t in 
~). 

As w1(z,0) 0 the

function a must be analytic.
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Let 
~k 

‘ 
~k 

be the operators (19) (respectively (20))

corresponding to the equation

(39) + aw + (~ z
_1
)kb1~) 

+ cw + (~~z l
)
k
d
1~ 

= 0 (0 < k < n)

and A , p be real continuously differentiable functions of t

in JR; then

w :  = +

is a bounded solution of (39) with

w0(~~,t) = A ( t )  + ip ( t ) , w(z ,0) = F k ( z ) A ( O )  + G
k
(z)p(O)

~

where Fk,
G
k 

is the generating pair associated with

The operators !k’~~k 
defined by

= zk [k 0J (z,t) , [Gko ) , t ) :  =

are useful to construct solutions of (35) with y = 0 having

a pole of order k at infinity. The operators Fk , Gk(O < k < n)

are linearly independent over SR. If more generally

k~O [~~~~ 
+ 

~k~k). 
= 0

then

~ A + C p J (z~t) 0
k— 0 -

Allowing z to tend to infinity , one qets that

A~~(t) + ip (t) E 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proceeding in this manner it follows tha t

( 0< k < n ) .

On the other hand

k~0 
(~k

Ak + ~k~
’k)

is a solution of (35) with y ‘
= 0 for every sys tem

of real continuously di fferentiable functions of t in JR
having a pole of order less than or equal to n at infinity

If in analogy to (37 )  ik , Gk (0 < k < n) are defined by

(!k~ ) •  = t I~k~J = 
‘ [~ ): = z [F k$) =

= z9k $ 
(~k )  

= z
k_n

~k
$

then

(40) 
JO kk A k + GkPk) [A k~

lik C C
1
(P) , 0 < k ~

is a solution of (38).

Lemma 5. Every solution ~ of problem (38) with ~ (z,O) E 0

is given in the form (40) where Ak(O) 
= 

~~~~~~~ 
= 0 ( 0  < k < n).

Proof. As a, b, c, d vanish near infinity and ~ (z,0) 0 ,

~ is analytic near infinity (for each t) so that

~(z,t) — O (Iz~~
’
~’) (z + °~~, t C R, 0 < k < n)

or more precisely
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1im[z
n_
~~~(z,t)j = A

k
(t )  + iuk(t) (t C ER)

2 -~~~~

where Ak and are in C1(ER) and Ak (O) = p~~ (O) = 0.

We note , furthermore, that

- 
~k Ak - 

~k~k

is a solution of (38), analytic outside D+. Moreover ,

lint Z
~~~{~

-FkAk
_G
kPk] 

(z,t) 1irn[z’~~~~
_
~k

Ak
_
~kP~~ 

(z,t) =

= 0  (tC ~~ ),

so that

u~ ~
n
~
k 
[~

_
~k

Ak
_
~kP~1(z

,t)  = A k l (t )  + ipk l (t) (t € ER) ,

where Ak...l and 
~k-l 

are C1(JR) functions vanishing in t = 0.

By induction we arrive at a solution of (38) having the form

= - + 

~ J’ )~~,ii~ cC1iR),

A
~~
(0) = u,,

( O)  = 0 (0 ~ v ~ k)

with the properties

w(z,0) 0 (2cC), w(z,t) — 0 ~~~~~~~ (z + ~~~, t c ER)

But then
+ +U) , Z C D

z c D

is a bounded solution in ~ x ER of the homogeneous problem

— -A- 

. —, - ——- - —— . ——-.—‘— — - - . • - - . — -
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(35) with y = 0 and

w1
(z,0) 0 (z c C), w1

(z,t) = 0 [IzI~~ ) 
(z + 

~~~, t ~ ER)

so that vanishes identically in C x ER. Adding to

an arbitrary solution of (38) of the form (40), the

assumption on ~ (z,0) in the lemma appears unnecessary ; consequently

the following theorem holds. 
-

Theorem 9. Thg general solution of (31) has the form

w(z,t) = {w (z ~ ’t) + tJ,(z) + 
k=O Lkk 

+ 
~kPkJ

(z
~t)}

exp 
~~~~~~~~~ f •(~~)~~ -~

.

with

[IffY) 
- ~ f (z) ~ 

+ 
in D~~

k=0 (k+1)!
w(z,t): =

k+l
2—n l

uli ~ 
z ’

~
fk(z) 

‘
~ i.fl D

k=O (k-fl)!

where 4,Xk~Pk
(O < k < n), f

~~
(v C ~~~) are given by the initial

data of w, and the are defined by (42).

Proof. If is an arbitrary solution of (38) with given data

iji(z): ü ( z ,0) (z C C)

such that ~~(z,t) does not have a singularity at z = ~ ( for

all real t), and u is a special solution of the inhomogeneous

problem
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(41) 
.~j(u + au + 

~) 
+ cu + ãti i : = c~P+d4i in (C-r)x ER

+ n —
u = z u on r x JR , u(z,0) 0 in C, u (c o , t )  0 in ER,

then

= - + u
0

is a solution of (38) with homogeneous data

- ~ (z,0) 0 in C *

Hence, by lemma 5 ~ may be given in the form (40), where

A
k
(O) = 

~~~~~~~ 
= 0 (0 < k < n).

To find a special solution of the inhomogeneous problem

(41), we consider the equation
+

k [~ + av + b1~) 
+ cv + d1~ = f , = 

{

~~I1 :: :..
where

b1 and d1 are as in (35) and v is determined similarly by u as

was in (34) by w • One such solution can be found by solving

the integral equation

V - = f t

where

(P1
v)(z,t):= ~J J{[c(r)v(~~ t) + d1(c)v(~~,T)]c4

1)(z,C) +

+ [c C v~~it + d
1
(~ )v(c,r)]C~~

2) (z, C)}d~dndt

and

— f [f(c)c~~1)cz ,~~) + g
~

(2 )
(z ,c) 1d~ dn
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Here (k=1 ,2) are the fundamental kernels of the equation

w + a w + b
1~~= 0

As shown in 111(v) , the solution is given by

k+l
v(z,t) = 

~ 
f
k
(z) t

k=O (k+l) !

(42) f :  = f , fk
(z): = 

~J {[c(C)fk l (C)+d
l
(
~
) fk_l (~)]~~~

1
~~
(2 ,

~~
)

+ [c(~~
) f k l (C) + 

~l 1
~ k l  

)1~42) (z ,c) d~dri (kc~ ),

where 
~~~~ 

= 0 (kc~’Z
0
).

By the lemma 5 and this special solution the general solution

of (31) may be found.

_________________ ‘ ‘  

~~~A .  — -

— — —‘~~~~~~~‘ - _________________________________ __________________________ _________________
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